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Abstract

Bl Deep convolutional neural networks (DCNNs) are able to par-
tially predict brain activity during object categorization tasks, but
factors contributing to this predictive power are not fully under-
stood. Our study aimed to investigate the factors contributing to
the predictive power of DCNNs in object categorization tasks. We
compared the activity of four DCNN architectures with EEG
recordings obtained from 62 human participants during an object
categorization task. Previous physiological studies on object cat-
egorization have highlighted the importance of figure-ground
segregation—the ability to distinguish objects from their back-
grounds. Therefore, we investigated whether figure-ground seg-
regation could explain the predictive power of DCNNs. Using a
stimulus set consisting of identical target objects embedded in
different backgrounds, we examined the influence of object
background versus object category within both EEG and DCNN
activity. Crucially, the recombination of naturalistic objects and

INTRODUCTION

Deep convolutional neural networks (DCNNs) have
entered the computational modeling scene with high pre-
dictive performance of both object category and brain
dynamics during object categorization tasks (Schrimpf
et al., 2018; Cadieu et al., 2014; Khaligh-Razavi &
Kriegeskorte, 2014; Yamins et al., 2014). These predictions
on brain dynamics are not limited to low-level image sta-
tistics but also include high-level features such as animacy,
object category, and semantics (Doerig et al., 2022; Takagi
& Nishimoto, 2022; Dwivedi, Bonner, Cichy, & Roig, 2021,
Ritchie et al., 2021; Eickenberg, Gramfort, Varoquaux, &
Thirion, 2017). In fact, DCNNs’ predictive performance
on visual processes surpassed hand-engineered, biologi-
cally inspired models (e.g., Gabor wavelet filtered, HMAX)
because DCNNs are able to achieve high performance on
visual tasks (Cichy & Kaiser, 2019; Yamins & DiCarlo,
2016). Traditional mechanistic models generally include
few parameters and are tested on simplistic, artificial
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experimentally controlled backgrounds creates a challenging
and naturalistic task, while retaining experimental control. Our
results showed that early EEG activity (< 100 msec) and early
DCNN layers represent object background rather than object
category. We also found that the ability of DCNNs to predict
EEG activity is primarily influenced by how both systems process
object backgrounds, rather than object categories. We demon-
strated the role of figure-ground segregation as a potential pre-
requisite for recognition of object features, by contrasting the
activations of trained and untrained (i.e., random weights)
DCNNs. These findings suggest that both human visual cortex
and DCNNs prioritize the segregation of object backgrounds
and target objects to perform object categorization. Altogether,
our study provides new insights into the mechanisms underlying
object categorization as we demonstrated that both human visual
cortex and DCNNs care deeply about object background. Wl

stimuli such as bar gratings and white noise; in contrast,
DCNNs generally include hundreds of thousands to mil-
lions of parameters and are tested on complex and natu-
ralistic stimuli such as photographs of real objects or
scenes. However, this acclaim is not without criticism;
DCNNs have been labeled as “black boxes” (Kay, 2018;
Marcus, 2018) as researchers struggled to understand
how millions of parameters work together to perform
tasks such as object categorization (Scholte, 2018), and
also predict brain activity without being trained with brain
data (Lillicrap & Kording, 2019).

The criticism toward DCNNs sharpens as studies
revealed divergences in categorization strategies between
humans and DCNNs—humans and DCNNs make mistakes
on different images (Geirhos, Meding, & Wichmann, 2020;
Rajalingham etal., 2018; Geirhos et al., 2017), DCNNs have
an inherent texture bias whereas humans have an inherent
shape bias (Tartaglini, Vong, & Lake, 2022; Baker, Lu,
Erlikhman, & Kellman, 2018; Geirhos et al., 2018; Ritter,
Barrett, Santoro, & Botvinick, 2017), and DCNNs are sus-
ceptible to adversarial attacks imperceptible to humans
(Akhtar & Mian, 2018; Goodfellow, Shlens, & Szegedy,
2014). Although these studies point to differences in
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categorization strategies, they do not negate the fact that
DCNNSs can still produce representations that align with
human visual processing (Cao & Yamins, 2021a), as
reflected in its high predictive performance of brain
dynamics. In other words, even if certain DCNN’s catego-
rization outputs from DCNNs are incorrect, we can probe
their processing stages to find shared representations with
human visual processing, thereby understanding crucial
steps for the task (Dwivedi et al., 2021; Truzzi & Cusack,
2020). The right question would then be, “Which repre-
sentations are useful and robust for solving the task?”

In this study, we investigated the factors leading to
DCNNSs’ high predictive power on human visual process-
ing within an object categorization task, focusing on essen-
tial representations for solving the task. Prior research has
shown the importance of figure-ground segregation
(Roelfsema, 2006; Roelfsema, Lamme, & Spekreijse,
2002)—the ability to distinguish an image’s foreground
and background (i.e., object and background). This ability
is especially crucial when the object and its background
share similar features such as line orientations, curvatures,
and colors. Both humans and DCNNs showed enhanced
performance when presented with presegmented objects
compared with objects embedded in backgrounds (Loke
et al., 2022; Borji, 2021; Seijdel, Tsakmakidis, de Haan,
Bohte, & Scholte, 2020). To investigate this further, we
used images with identical target objects embedded in
varying background complexities, allowing us to isolate
human EEG recordings and DCNN activity related to target

object categorical features versus object background. This
approach provides a challenging and naturalistic task
while still maintaining experimental control and enables
us to identify potentially useful representations in object
categorization. We opted for EEG recordings over fMRI
because of EEG’s higher time resolution as previous stud-
ies have shown that the effects of backgrounds occur at a
limited time window where feedback signals are dominant
(Seijdel et al., 2021; Groen et al., 2018; Zipser, Lamme, &
Schiller, 1996). Surprisingly, we discovered that both
early and late activity in human EEG recordings is largely
dedicated to processing object backgrounds. This pattern
was mirrored in the activity of DCNNs, which also priori-
tized object backgrounds over object categories. Our
findings suggest that the ability to distinguish between
the target object and its background is essential for
object categorization.

METHODS
Data

The electrophysiological data, sourced from Seijdel and
colleagues (2021), consist of EEG recordings from human
participants (72 = 62, 18-35 years old). The sample size was
determined based on a similar experimental paradigm
(Groen et al., 2018). For a brief description of the experi-
mental paradigm and example of stimuli, please see
Figure 1.

Figure 1. Stimuli sample

and experimental paradigm.

(A) Two object exemplars (cat
and fire hydrant) are displayed
across four background types.
The first (highlighted in blue) is
a uniform gray background,
referred to as the “segmented”
condition. The second
(highlighted in orange), third
(highlighted in green), and
fourth (highlighted in red)

are a low, medium, and high
complexity background,
respectively. The increasing
levels of background complexity
makes it increasingly difficult to
differentiate the target object
from its background. (B) The
experimental paradigm had
human participants perform

an object categorization task.
Each trial starts with a fixation
cross of 500 msec, followed

by a stimulus presentation

of 34 msec. The stimulus
presentation is followed by a
blank screen for 500 msec.

500 msec

500 msec

2000 msec

Finally, there is a response

screen displaying the five object category options for 2000 msec. Participants completed 480 trials—120 trials per image condition.
Figure adapted with permission from Seijdel and Loke and colleagues (2021).
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Stimuli

The stimuli used consisted of 120 unique target objects
(24 per category) from five categories (bird, cat, fire
hydrant, frisbee, and suitcase), embedded within four
background types (uniform gray background, low com-
plexity, medium complexity, and high complexity), result-
ing in 480 unique stimuli. The backgrounds were created
by phase-scrambling the original image backgrounds to
remove information aiding recognition of the target
object. The complexity of these phase-scrambled back-
grounds varied based on spatial coherence and contrast
energy (Scholte, Ghebreab, Waldorp, Smeulders, &
Lamme, 2009). The segmented condition does not have
phase-scrambled backgrounds but a uniform gray
one. The stimuli were presented at a resolution of 512 X
512 pixels.

DCNNs

We selected four established DCNN architectures,
commonly used in computational modeling—AlexNet
(Krizhevsky, Sutskever, & Hinton, 2012), VGG-16 (Simonyan
& Zisserman, 2014), ResNet-18, and ResNet-50 (He,
Zhang, Ren, & Sun, 2016). We initialized and trained five dif-
ferent seeds of each network using the ImageNet Large
Scale Visual Recognition Challenge 2012 (ILSVRC) data
set. These networks were then fine-tuned to the experi-
mental object categories with the Microsoft COCO data
set (Lin etal., 2014). We used different seeds to capture var-
iance between different initializations and obtain reliable
results (Mehrer, Spoerer, Kriegeskorte, & Kietzmann,
2020). For the initial training on ILSVRC, we used a learning
rate of 0.1 (except for VGG-16, which needed a lower
learning rate of 0.05) with a learning rate decay of 0.1
every 30 epochs and a weight decay of 1e-4. We also used
a stochastic gradient optimizer with a momentum of 0.9.
AlexNet, ResNet-18, and ResNet-50 were trained for 150
epochs whereas VGG-16 was trained for 74 epochs. All
DCNNs reached similar performance accuracies reported
in the original articles. For fine-tuning, we replaced the
last fully connected layer and retrained weights from all
layers. We fine-tuned the network with a learning rate of
le-3 with a learning rate decay of 0.1 every seven epochs.
The fine-tuning was performed for 20 epochs. We also
used a stochastic gradient descent optimizer with a
momentum of 0.9 for fine-tuning. In addition to trained
networks, we initialized five different seeds of each
architecture with no training as untrained networks.
All DCNN’s training and fine-tuning were done in
PyTorch (Paszke et al., 2019).

Analysis: Representational Similarity Analysis

We used the framework of representational similarity
analysis (RSA; Kriegeskorte, Mur, & Bandettini, 2008) to
compare EEG activity with DCNN’s activations. RSA is a

method of analysis allowing for the comparison between
different modalities by first generating a representational
structure of the stimuli set as reflected in brain activity (as
recorded using EEG sensors) and DCNNs (as reflected
through its unit activations), and then comparing both
those representational structures. This abstraction from
EEG sensors and DCNNs unit activations allows us to com-
pare the transformations performed by both modalities on
the stimuli. Using RSA, we obtained time-resolved EEG
activity and layer-wise DCNN activations in the form of rep-
resentational dissimilarity matrices (RDMs). The RDMs
consist of pairwise distances computed from multivariate
responses (i.e., pattern of EEG activity or pattern of layer-
wise DCNN’s activations) toward every possible stimulus
pair. Pairwise distances were computed as (1 — Pearson
correlation). An entry in the RDM between stimuli A
and B would be: 1 — Pearson correlation of multivariate
responses towards stimuli A and B; whereas, an entry in
the RDM between stimuli A and A would be 0. With 480
unique stimuli (120 unique objects X 4 background
types), we obtained 480 X 480 RDMs. In all analyses using
RDMs, we used only the upper triangle (excluding the
diagonal) because the RDMs are symmetrical.

RDMs of EEG recordings were computed using 22 pos-
terior electrodes (Iz, I1, 12, Oz, O1, O2, POz, PO3, PO4,
PO7, POS, Pz, P1, P2, P3, P4, P5, P6, P7, P8, P9, and P10).
These electrodes are chosen to focus on activity from
visual processing areas and were confirmed in previous
studies (Seijdel et al., 2021; Groen et al., 2018). The elec-
trodes placement followed a 10-10 layout, modified with
two additional occipital electrodes (I1 and 12) replacing
two frontal electrodes (F5 and F6). RDMs were computed
from every time sample from —100 msec to 600 msec rel-
ative to stimulus onset. RDMs of DCNN'’s activations were
obtained from activity of all convolutional, pooling, and
fully connected layers.

In addition to RDMs from EEG and DCNNSs, we also con-
structed categorical RDMs to evaluate the main effects of
our experimental manipulations. We built three categori-
cal RDMs—segmentation, background complexity, and
object category (see Figure 2). All three RDMs consisted
of binary values: “0” representing pairs from the same
group and “1” representing pairs from different groups.
Segmentation distinguishes between stimuli with and
without backgrounds (see Figure 2A). Background com-
plexity distinguishes between the four background types
(see Figure 2B): segmented (no background), low com-
plexity, medium complexity, and high complexity. Object
category distinguishes between the five object categories
(see Figure 2C). Here, it should be noted that the categor-
ical RDMs of segmentation and background complexity
correlate substantially (» = .45), because the segmented
stimuli all have the same complexity (i.e., 0; see
Figure 2A and B). As such, to separate the variance associ-
ated with segmentation or background complexity, we
performed partial correlations between the categorical
RDMs and EEG RDMs.
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Figure 2. Categorical models of main experimental manipulations. (A) The categorical RDM of segmentation distinguishes between trials with
and without backgrounds. (B) The categorical RDM of background complexity distinguishes between trials with different background complexities.
(C) The categorical RDM of object category distinguishes between trials based on the target object category.

With the RDMs, first, we correlated the EEG RDMs per
background condition with the categorical RDM of
object category. This allowed us to assess the amount
of object category information present in EEG as modu-
lated by the image background complexity. Second, we
performed partial correlations between the categorical
RDMs and EEG RDMs, and between the categorical
RDMs and DCNN RDMs to identify the shared represen-
tational structure. We chose to use a partial correlation
instead of a regression to control for the correlation
between the segmentation and background complexity
categorical model. Third, to assess which DCNN layer’s
representation was most similar to EEG, we performed
a Spearman correlation (i.e., classical RSA) between
EEG RDMs (for every time sample) and DCNN RDMs
(per layer). Fourth, we normalized each layer’s explained
variance from the Spearman correlation against the
upper noise ceiling (the upper bound of EEG data) for
all time samples and then plotted its median correlation
against the layer’s correlation with the categorical RDMs.
This allowed us to summarize each layer’s correlation
with EEG data across all time samples. Finally, we quali-
tatively inspected the representations from DCNNs using
t-distributed stochastic neighbor embedding (tSNE; van
der Maaten & Hinton, 2008).

All statistical analysis was performed and visualized
in Python using the following packages: NumPy, SciPy,
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Statsmodels, Pandas, Seaborn, Matplotlib (Waskom,
2021; Harris et al., 2020; Virtanen et al., 2020; McKinney,
2010; Seabold & Perktold, 2010; Hunter, 2007).

Analysis: Statistical

We used a Friedman test to determine if human partici-
pants and networks’ categorization performance differed
per background complexity (Figure 3). Significant
Friedman test results were followed up with a post hoc
Wilcoxon signed-ranks test to determine which condition
pairs were significantly different from each other.

We used the Wilcoxon signed-ranks test to determine
the onset of correlation significance between EEG RDMs
per background complexity condition and the categorical
RDM of object category (Figure 4). The p values obtained
from the Wilcoxon signed-ranks test are Bonferroni cor-
rected for multiple comparisons (o = .01).

We used the Wilcoxon signed-ranks test to determine
the onset of correlation significance between categorical
RDMs and EEG RDMs, and to determine statistical signifi-
cant differences in the correlation values of categorical
RDMs (Figure 5). The p values obtained from the Wilcoxon
signed-ranks test are Bonferroni corrected for multiple
comparisons (o = .01).

We used the Wilcoxon signed-ranks test to determine if
the correlation values between the networks’ layer
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Behavioral performance of humans and networks
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Figure 3. Behavioral performance of humans and networks. Human participants’ categorization performance was near optimal across background
complexity conditions. The Friedman test revealed that human participants’ performance was influenced by the image background complexity.
Post hoc Wilcoxon signed-ranks tests revealed significant differences between the low and medium, segmented and medium, segmented and high,
and low and high complexity conditions. Among all networks, ResNet-50 most closely resembles human participants’ performance. The data from
human participants and ResNet-18 have previously been published in Seijdel and colleagues (2021).

activation and EEG RDM significantly differed from the
correlation values of the categorical RDM of segmentation
with EEG RDM (Figure 6). The p values obtained from the
Wilcoxon signed-ranks test are Bonferroni corrected for
multiple comparisons (o = .01).

RESULTS

In this study, we investigated the factors contributing to
the high predictive performance of DCNNs in human
visual processing dynamics. First, we demonstrated that

Correlation of object category with EEG
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Figure 4. Neural signal for object concept. Objects without a background (segmented condition) have the earliest onset (117.78 msec) and
highest degree of object concept (» = .021). This is followed by objects embedded in low complexity backgrounds (168.33 msec; » = .015), then
objects in medium complexity backgrounds (199.44 msec; » = .013), and finally, objects in high complexity backgrounds (230.56 msec; » = .010).
The colored asterisks indicate when values are significantly above zero.
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Partial correlations of conceptual models with EEG
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Figure 5. Partial squared correlation of conceptual models with EEG RDMs. By correlating our categorical RDMs with EEG RDMs, we find that the
correlation with segmentation was the largest and earliest at 86.67 msec. This was followed by the correlation with background complexity with an
onset at 90.56 msec. Finally, the correlation with object category was much smaller and later at 110 msec, compared with both factors related to
object backgrounds. The colored asterisks indicate when values are significantly above zero. Wilcoxon signed-ranks tests also indicated that both
background factors—segmentation and background complexity—had larger correlation values (in magnitude) as compared with object category.
Altogether, this shows that EEG RDMs are largely modulated by object backgrounds, and the processing of object backgrounds precedes object
category.
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Figure 6. Best correlating DCNNs layers with EEG. We correlated DCNN RDMs (per layer) with EEG RDMs and observed that only AlexNet’s second
convolutional layer was close to the noise ceiling of the EEG data. AlexNet was also the only network which surpassed the explained variance of the
segmentation RDM (asterisks indicate significant differences from segmentation RDM). AlexNet’s second convolutional layer had significantly higher
correlation values compared with the segmentation RDM between 94.44 msec and 222.78 msec. ResNet-18’s seventh convolutional layer had
significantly higher correlation values compared with the segmentation RDM between 86.67 msec and 113.89 msec. ResNet-50’s eighth convolutional
layer had significantly higher correlation values compared with the segmentation RDM between 90.56 msec and 102.22 msec. VGG-16’s fifth
convolutional layer was statistically equivalent with the segmentation RDM at all time points. The colored asterisks indicate when values significantly
differed from the categorical RDM of segmentation.
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both human participants and DCNNs could perform the
object categorization task above chance. Second, we
demonstrated that human participants’ EEG activity
differed per object background complexity. Third, using
RSA (see Materials and Methods section), we examined
the representations of EEG recordings using three
categorical RDMs (see Materials and Methods section)—
segmentation, background complexity, and object cate-
gory (see Figure 2). We computed partial correlations
between the categorical RDMs and EEG RDMs, and
between the categorical RDMs and DCNN RDMs. Results
from both sets of partial correlations revealed that EEG
recordings and DCNN activations alike shared a high
proportion of activity that distinguished between objects
with backgrounds and those without. To investigate which
processing stage (i.e., which layer) was most similar
between human participants and DCNNs, we performed
Spearman correlations between EEG RDMs (at every time
sample) with DCNN RDMs (per layer). Finally, we showed
that DCNN layers that correlate highly with EEG record-
ings are also layers that correlate highly with the categor-
ical RDM of segmentation.

Deeper Networks Better Resemble Human
Performance Compared with Shallower Networks

Human participants exhibited near-optimal categorization
performance, despite the images being displayed for only
32 msec (see Figure 3). Results from the Friedman test
showed that human participants’ performance differed
per background complexity condition, x*(3) = 31.45,
p < .001. Post hoc Wilcoxon signed-ranks tests revealed:
no significant differences between the segmented and
low condition, W = 480.5, p(uncorrected) = 0.51; signifi-
cant differences between the low and medium condition,
W = 334.5, p(uncorrected) = .003; no significant differ-
ences between the medium and high condition, W =
346.5, p(uncorrected) = .13; significant differences
between the segmented and medium condition, W =
176.5, p < .001; significant differences between the seg-
mented and high condition, W = 129.0, p < .001; signifi-
cant differences between the low and high condition, W =
248.0,p < .001.

Among all networks, the deepest network (ResNet-50)
best resembled human performance. Compared with all
other networks, its mean categorization performance
was the closest to human performance. Results from the
Friedman test showed that ResNet-50’s categorization per-
formance differed per background complexity condition,
x*(3) = 14.04, p = .002. Post hoc Wilcoxon signed-ranks
tests revealed: no significant differences between the
segmented and low condition, W = 0, p(uncorrected) =
.06; no significant differences between the low and
medium condition, W = 1, p(uncorrected) = .13; no
significant differences between the medium and high

condition, W = 0, p(uncorrected) = .06; no significant dif-
ferences between the segmented and medium condition,
W =0, p(uncorrected) = .06; no significant differences
between the segmented and high condition, W =
0, p(uncorrected) = .06; no significant differences between
the low and high condition, W = 0, p(uncorrected) = .06.

For all other networks (AlexNet, VGG-16, and ResNet-
18), their categorization performance is similarly influ-
enced by background complexity; (AlexNet) x*(3) =
15.0, p = .002; (VGG-16) x*(3) = 13.56, p = .003;
(ResNet-18) x*(3) = 14.02, p = .003. Post hoc Wilcoxon
signed-ranks tests revealed similar results for all three net-
works (AlexNet, VGG-16, and ResNet-18): no significant
differences between all condition pairs. However, these
post hoc test results on DCNNs need to be interpreted
with caution as they are based on a small sample size
(n =5).

Object Background Modulates Availability of
Object Concept in EEG

Although human participants’ categorization perfor-
mance was near optimal across all background complex-
ity conditions, the neural signals varied depending on
the complexity of the object’s background (see
Figure 4). Here, we correlated EEG RDMs per back-
ground complexity condition with the categorical RDM
of object category. This correlation informs us the
degree to which object concept is present in the neural
signal within each background complexity condition.
Although the correlation values between object category
RDM and EEG are modest, they were consistent with
previous findings for a similar stimulus presentation rate
(Grootswagers, Robinson, & Carlson, 2019). Overall, we
observed that the degree of object concept decreases
with increasing background complexity. In line with
Grootswager and colleagues (2019), who noted that
stimulus presentation rate influences EEG representation
of object categories, our results add that background
complexity also plays a significant role in modulating
these neural signals.

Objects in the segmented condition has the earliest
significant onset of object concept at 117.78 msec,
W = 1406, p(Bonferonni corrected) < .001, and also
the highest degree of object concept (r = .021),
followed by the low complexity condition with signifi-
cant onset of object concept at 168.33 msec, W =
1415, p(Bonferonni corrected) < .001, and object con-
cept of » = .015, then medium complexity condition with
significant onset of object concept at 199.44 msec, W =
1397, p(Bonferonni corrected) < .001, and object con-
cept of » = .013, and finally high complexity condition
with significant onset of object concept at 230.56 msec,
W = 1407, p(Bonferonni corrected) < .001, and object
concept of » = .010.
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Object Background Modulates Early Neural Activity
in Humans

To investigate which of our experimental factors best
explained human participants’ EEG recordings, we per-
formed partial correlations between the categorical RDMs
with EEG RDMs (see Figure 5). The EEG RDMs correlated
highly with segmentation; this correlation had an onset of
86.67 msec, W = 79, p(Bonferonni corrected) < .001. This
was followed by a correlation between the EEG RDMs with
background complexity (onset of 90.56 msec), W = 197,
p(Bonferonni corrected) < .001. Finally, there was a much
smaller correlation between the EEG RDMs with object
category (onset of 110 msec), W = 222, p(Bonferonni cor-
rected) < .01. The order of onset significance started with
segmentation and background complexity, both factors
relating to object background, and subsequently arrived
at object category.

We performed Wilcoxon signed-ranks tests between the
correlation values of segmentation and background
complexity, and between the correlation values of seg-
mentation and object category. The correlation between
the EEG RDMs with segmentation is significantly higher
than the correlation between the EEG RDMs with back-
ground complexity at ~87-258 msec and ~339-441 msec,
p(Bonferonni corrected) < .01, and also significantly
higher than the correlation between EEG RDMs with
object category at ~87-242 msec. We also performed
Wilcoxon signed-ranks tests between the correlation
values of background complexity and object category.
The correlation between the EEG RDMs with background
complexity is significantly larger (irrespective of signs)
than the correlation between the EEG RDMs with object
category at ~91-596 msec, p(Bonferonni corrected) <
.01. Thus, both factors related to object backgrounds have
earlier onsets and higher correlations as compared with
object category. We can infer two things from these
results—1. object background modulates majority of
visual processing signals; not object category, and 2.
visual processing of object backgrounds takes place
before visual processing of object category.

Object Background Predicts Brain Activity As
Well As DCNNs

To investigate which DCNNs processing stage (i.e., which
layer) was most similar to human participants, we per-
formed Spearman correlations between DCNN RDMs
(per layer) with EEG RDMs (at every time sample). We
plotted the best layer (i.e., the layer from each DCNN with
the highest correlation with EEG), next to the best cate-
gorical RDM—segmentation.

We found that AlexNet was the only DCNN that sur-
passed the explained variance of the categorical RDM of
segmentation (see Figure 6). The correlation values of
AlexNet’s second convolutional layer was significantly
higher than the correlation values of the categorical
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RDM of segmentation, within the time window of
94.44 msec until 222.78 msec. On the other hand, the
categorical RDM of segmentation captured an equivalent
amount of variance in the human participant EEG
recordings as layer activations of VGG-16, ResNet-18, and
ResNet-50. The correlation values of the categorical RDM
of segmentation were higher than ResNet-18’s seventh
convolutional layer within the time window of 86.67 msec
until 113.89 msec, and also higher than ResNet-50’s
eighth convolutional layer within the time window of
90.56 msec and 102.22 msec. The correlation values of
the categorical RDM of segmentation were statistically
equivalent with VGG-16’s fifth convolutional layer for all
EEG time points. Out of the four DCNNs, AlexNet was
the closest to the noise ceiling of the EEG RDMs whereas
the other networks fell far from the noise ceiling.

Object Background Modulates Early Layers’
Activations in DCNNs

To investigate which of our experimental factors best
explained DCNNSs’ activity, we similarly performed the par-
tial correlation between the categorical RDMs with
DCNNs’ activations (per layer; see Figure 7). First, we
observed that early layers of the DCNNs have high corre-
lation values with segmentation and background
complexity—indicating that a large proportion of DCNNs’
early activity is related to object background, not object
category, similar to activity in human brains as shown in
Figure 5. Second, we observed that correlations with
object category arose in later layers. In deeper networks
(with more layers), the correlations with object category
became much higher toward the penultimate layer as
compared with shallower networks. As a control, we per-
formed the partial correlations between categorical RDMs
and untrained DCNN RDMs. We observed that the corre-
lation for segmentation (and not background complexity
nor object category) similarly captured a large proportion
of untrained DCNNSs’ activations. However, unlike their
trained counterparts, untrained DCNNs’ correlations
arose more gradually and remained until the penultimate
(fully connected) layer. In addition, the correlation for
background complexity and object category remained
close to null throughout the untrained DCNN layers. This
indicates that the background differences in untrained
DCNNSs were not resolved or made invariant, unlike their
trained counterparts. Presumably, this transformation of
making backgrounds invariant allowed the networks to
learn object categorically relevant features.

To further understand the network activations, we
visualized its activity with tSNE (van der Maaten &
Hinton, 2008)). tSNE maps high-dimensional data points
to 2-D or 3-D spaces. We selected to visualize the activa-
tions of DCNNs’ first and final layers, and also the layer
with the highest correlation with human participants
EEG recordings. The tSNE visualization showed that
DCNNs’ layers that correlate most with EEG RDMs
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Figure 7. Partial correlation of
categorical RDMs with DCNNs.
The partial correlations
between categorical RDMs
(segmentation, background
complexity, and object
category) and DCNN RDMs are
shown for each layer of the
network. Partial correlations for
untrained DCNN RDMs are
marked by the yellow stars.
Values on the x axis indicate
layer number; values on the

y axis indicate the layer’s partial
correlation with the categorical
RDMs. We observed that the
early layers of DCNNs correlate
largely with both segmentation
and background complexity but
not with object category. The
correlation with object category
gradually increases in the later
layers, with deeper networks
showing a larger increase
compared with shallower
networks. This pattern of
correlation is robust across

all networks.
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showed activation that is differentiated along object
background—not object category (see Figure 8). In the
first layer of all networks, we see a random initialization
with no clear clustering of stimuli. In the layer that corre-
lates most with brain activity, we see a clustering of

activity according to object backgrounds. And in the final
layer, we see a clustering of activity according to object
category. With the tSNE visualization, we showed that
DCNNSs’ activity differentiates first according to object
background and then according to object category. One

Figure 8. tSNE of DCNN'’s
activations. We applied tSNE to
DCNNs’ activations in the first
(leftmost) and last (rightmost)
layers, and also the layer that
correlated most with brain

W segmented
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B medium complexity ® birds * frisbees + suitcases
m high complexity ® cats » fire hydrants

tSNE of activity in AlexNet
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activity (middle). Colors
indicate object background
conditions—segmented (blue),
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medium complexity (green),
high complexity (red). Markers
indicate object category—bird
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(stars), fire hydrant (triangles),
suitcase (plusses). We observed

that DCNNs’ layer that best
captured human participants’
EEG recordings has activity
differentiated along object
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background—not object
category. In the first layer of all
networks (leftmost), we see a
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we see a clustering of activity
according to object background
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notable exception of this pattern of results is AlexNet;
in its output layer (Layer 9), its activity is still clustered
along object background. One possible explanation
is that AlexNet, being a shallower network compared
with the other three, lacks the depth and additional
processing needed to differentiate stimuli based on
their categories.

We showed that DCNNs’ layers that capture differences
related to object background are also layers that best cap-
ture human participants’ EEG recordings. As these layers
with activations differentiating object background corre-
late with brain activity, we posit that the predictive power
of DCNNs on brain activity is largely derived from its ability
to differentiate object backgrounds, or, more specifically,
image textures (Geirhos et al., 2018).

DCNNs Layers That Correlate Highly with EEG
RDMs Also Correlate Highly with Segmentation

After observing that both EEG RDMs and DCNNs’ RDMs
correlate highly with the categorical RDM of segmenta-
tion (see Figures 5 and 7), we wanted to investigate the
relationship between the three groups of RDMs—EEG
RDMs, DCNNs’ RDMs, and the categorical RDMs. Specif-
ically, we examined if the correlation values of EEG with
a categorical RDM (e.g., segmentation), and the correla-
tion values of DCNNs with the same categorical RDM,
correlated with each other. By doing so, we directly
investigate if DCNNs’ layers, which correlate with a cat-
egorical RDM, also correlate well with EEG. This correla-
tion analysis gives us a bridge between EEG and DCNNs
to observe if their correlation with a categorical RDM
helps explain DCNNs’ predictive power on EEG dynam-
ics. Thus, we took the correlation values of DCNNs with
the three categorical RDMs (one datapoint per layer,
averaged across five initializations) and plotted each
DCNN layer’s median correlation with EEG across all
time points. We observed that DCNNs’ RDMs, which cor-
relate highly with EEG RDM also correlate highly with
the categorical RDM of segmentation (AlexNet, » =.98,
p < .001; VGG-16, r = .50, p = .04; ResNet-18, r =
53, p = .01; ResNet-50, » = .53, p < .001). This indi-
cates that DCNNs’ correlation with brain activity is
derived from its ability to distinguish between objects’
backgrounds. DCNNs’ RDMs, which correlate moder-
ately with background complexity, have a weaker corre-
lation with EEG RDM (AlexNet, » = —.42, p = .26;
VGG-16, r = —.33, p = .20; ResNet-18, » = —.16, p =
47; ResNet-50, » = .16, p = .26). DCNNs’ RDMs, which
correlate moderately with the categorical RDM of object
category, also have a weaker correlation with EEG RDMs
(AlexNet, » = —.58, p = .10; VGG-16,r = —.11, p = .68;
ResNet-18, » = .14, p = .52; ResNet-50, r = .17, p =
.20). Therefore, we can conclude that much of the pre-
dictive power of DCNNs on EEG dynamics stems from
the shared representations of object backgrounds
between DCNNs and the human visual cortex.

DISCUSSION

We set out to investigate the factors leading to DCNNs’
high predictive performance on human visual processing
dynamics by studying objects and their backgrounds.
Using RSA (Kriegeskorte et al., 2008), we compared the
activity of four DCNN architectures with EEG recordings
of human participants. We focused on three factors: seg-
mentation, background complexity, and object category.
First, we showed that object background modulates the
amount of object concept in EEG signals. Second, we
showed that object background largely modulates early
EEG signals and early DCNNs layers. Third, we showed
that both representations from EEG and DCNNs reflected
the distinction between objects with and without back-
grounds. Fourth, we showed that the shared distinction
of object backgrounds is associated with DCNNs’ high pre-
dictive performance on human visual processing dynam-
ics. We posit that DCNNs” ability to predict EEG signals
is derived from its ability to distinguish between target
object and object backgrounds.

Processing of Object Backgrounds in Humans
Happens Earlier and Is More Substantial Than
Processing of Object Features

We found high correlations between the categorical RDMs
of segmentation and background complexity with
EEG—revealing that visual processing (as recorded with
EEG) is largely modulated by object backgrounds instead
of object category (see Figure 5). Furthermore, the corre-
lations between segmentation and background complex-
ity with EEG have earlier onsets compared with object
category—segmentation at 86.67 msec, background com-
plexity at 90.56 msec, and object category at 110 msec. Our
result suggests that the processing of object background
precedes object features, and through this process, target
objects and their backgrounds become distinct. This is evi-
dent not only in the latency of significant correlation
between the conceptual models and EEG, but also in the
correlation between the conceptual models and DCNNs
layers—where correlations with segmentation and back-
ground complexity precede object category.

Our finding agrees with previous findings showing that
object background complexity influences object categori-
cal perception, with objects embedded in more complex
backgrounds reaching categorical perception later (Seijdel
et al., 2021; Groen et al., 2018). The longer latency for
categorical perception could be explained by time taken
to distinguish between the target object and its back-
ground. In addition, our result also extends initial findings
that categorical perception is fast (within 150 msec; Hung,
Kreiman, Poggio, & DiCarlo, 2005; Thorpe, Fize, & Marlot,
1996). Results from earlier studies demonstrating the
quickness of categorical perception holds when the pre-
sented stimuli are simple (i.e., object with a plain back-
ground); however, if the presented stimuli are more
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complex (i.e., object with a complex background), longer
latency incorporating additional processing steps would
be required (Kar, Kubilius, Schmidt, Issa, & DiCarlo,
2019). As natural scenes comprise a myriad complexities
in backgrounds, we recommend a careful consideration
of not only object category but also backgrounds.

DCNNSs Processes on Object Backgrounds Explain
EEG Activity

In our experiment, we show that DCNNs’ predictive power
on EEG data is derived from DCNNs’ inherent ability to dis-
tinguish between objects with and without backgrounds.
Crucially, the distinction of object backgrounds is orthog-
onal to the object categorization task. The selected DCNNs
for the experimental task have been pretrained on a natu-
ralistic data set (ImageNet) and further optimized with a
separate data set (MSCOCO). Nonetheless, DCNNs’ activa-
tions reflect a distinction between objects with and with-
out backgrounds. The distinction is apparent in its partial
correlation with the categorical RDMs of segmentation
and background complexity (see Figure 7), especially in
DCNNSs’ early and mid-layers. In addition, we also showed
that DCNNs’ layers, which correlated with segmentation,
also correlated with EEG (see Figure 9), suggesting that
DCNNSs’ predictive power on EEG data is largely derived
from the shared ability of both modalities to distinguish
between the target object and its background.

Our conclusion that DCNNs’ predictive power on EEG
data is derived from the shared ability of both modalities to
distinguish between objects’ backgrounds needs to be
considered carefully because we have reconstructed an
experimental data set with target objects embedded
within artificial backgrounds. There is a high necessity to
identify the target object as separate from its background
because the artificial backgrounds are uninformative on
the object category. In contrast, if the object category
correlated with its background (e.g., frisbee with the
background of a park), and if the discrimination of object
categories could be performed sufficiently well based on
the object backgrounds, no distinction needs to be made
between target objects and their backgrounds. In reality,
most naturalistic scenes will have backgrounds that are
informative of its target objects’ categories as these are a
matter of statistical correlations (Oliva & Torralba, 2007).
In our study, we constructed an object categorization
task that required the distinction of target object and
its background with the intention of investigating the
mechanism of figure-ground segmentation; surprisingly,
we found that both DCNNs and our human participants
shared this ability.

Constraints of EEG Signals in Capturing
Object Categories

Although the correlation values between categorical RDMs
and EEG in our study are modest, it is essential to interpret

12 Journal of Cognitive Neuroscience

these findings within the broader research context. These
low, yet consistent correlation values are aligned with pre-
vious studies conducted at a comparable stimulus presen-
tation rate (Grootswagers et al., 2019). These results
underscore the inherent limitations of capturing the neu-
ral processes of object categorization through EEG. The
signal-to-noise ratio in EEG recordings is generally low,
but further limited by presentation rate. On top of presen-
tation rate, our data revealed that background complexity
also significantly modulates these neural signals, adding
another layer of complexity to our understanding of object
categorization. We believe that these insights will be
valuable for future research, aiding in the design of
experiments and setting of appropriate methodological
expectations.

Emergence of Shared Solutions for
Object Categorization

The shared ability to distinguish between target objects
and their backgrounds within human visual processing
and DCNNs is intriguing. It prompts us to explore a funda-
mental question: Why does this shared ability exist in the
first place? This ability was not directly implemented in
both systems yet emerged as part of the solution for cate-
gorizing objects. Within vision neuroscience, this ability to
distinguish between target objects and its backgrounds
has long been studied as part of processes known as
perceptual grouping or figure-ground segmentation
(Kirchberger et al., 2021; Self et al., 2019; Scholte, Jolij,
Fahrenfort, & Lamme, 2008; Roelfsema, 2006; Roelfsema
et al., 2002; Lamme, Super, & Spekreijse, 1998). Specifi-
cally, these processes refer to the grouping of image
elements that belong to different entities. It has been
shown that if these processes were interrupted in human
participants, object categorization becomes impaired
(Fahrenfort, Scholte, & Lamme, 2007). In our study, the
emergence of a shared solution (i.e., perceptual grouping)
for object categorization suggests that it is a crucial
solution for the task at hand and could elucidate the evo-
lutionary constraints on the problem (Cao & Yamins,
2021b). This helps us arbitrate which biological processes
are necessary to incorporate in artificial systems depend-
ing on their contexts.

Figure-ground Segregation Assists Object
Features Learning

Previous research has shown the surprising prediction
performance of random weights networks (Storrs,
Kietzmann, Walther, Mehrer, & Kriegeskorte, 2021; Truzzi
& Cusack, 2020; Cichy, Khosla, Pantazis, Torralba, & Oliva,
2016); it is indeed impressive that random weights net-
works are able to explain any brain activity at all. Our
experimental results similarly showed that untrained net-
works can explain variance in brain activity through its
inherent ability to process low-level image statistics.
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Figure 9. Relationship between DCNN’s correlation with EEG and categorical RDMs. Each dot represents a DCNN layer (averaged across five
initializations). The correlation value plotted is the median correlation with EEG across all time points. Darker colors indicate deeper layers within a
network, and lighter colors indicate shallower layers. (A) We observed that layers that correlate highly with EEG are also layers that correlate with the
categorical RDM of segmentation. (B) The relationship between DCNNs’ correlation with EEG and the categorical RDM of background complexity is
much weaker, and similarly, (C) the relationship between DCNNs’ correlation with EEG and the categorical RDM of object category is also much
weaker as compared with the categorical RDM of segmentation.
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Through correlating untrained networks’” RDMs with con-
ceptual RDMs, we find that the networks’ activity is mod-
ulated only by object background and not object category
at all (see Figure 7). We observed a similar predictive
performance of an untrained network on V1 in previous
studies, where the correlation of the untrained network
gradually increased in the early layers and remained until
the late layers (Cichy et al., 2016). In our study, we
observed that the conceptual RDMs of segmentation cor-
related moderately with the layers of untrained networks,
whereas the conceptual RDMs of background complexity
and object category did not correlate with the layers of
untrained networks. This indicates that untrained net-
works can partially distinguish between objects with and
without backgrounds. However, they are unable to distin-
guish between background types or categorical features.
In contrast, layers of trained networks showed a correla-
tion with segmentation up until the middle layers of the
network, which then gradually decreased, matched by
the gradual increase of correlation with object category.
This suggests that trained networks “resolved” figure-
ground segregation, allowing them to learn object cate-
gorical features.

Conclusion

In summary, we have tested the best mechanistic models
of visual processing and showed that both early human
visual processing and early layers of DCNNs are highly
influenced by object backgrounds rather than object cate-
gories. Furthermore, this shared ability to distinguish
between object backgrounds accounts for the predictive
power of DCNNs on EEG activity. Interestingly, neither
humans nor DCNNs were explicitly trained to make these
distinctions, yet this shared solution emerged to address
the experimental task of object categorization. Overall,
our findings indicate that both human visual processing
and DCNNs care deeply about object backgrounds.
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